The Actias system: supervised multi-strategy learning paradigm using categorical logic
نویسندگان
چکیده
One of the most difficult problems in the development of intelligent systems is the construction of the underlying knowledge base. As a consequence, the rate of progress in the development of this type of system is directly related to the speed with which knowledge bases can be assembled, and on its quality. We attempt to solve the knowledge acquisition problem, for a Business Information System, developing a supervised multi-strategy learning paradigm. This paradigm is centred on a collaborative data mining strategy, where groups of experts collaborate using data-mining process on the supervised acquisition of new knowledge extracted from heterogeneous machine learning data models. The Actias system is our approach to this paradigm. It is the result of applying the graphic logic based language of sketches to knowledge integration. The system is a data mining collaborative workplace, where the Information System knowledge base is an algebraic structure. It results from the integration of background knowledge with new insights extracted from data models, generated for specific data modelling tasks, and represented as rules using the sketches language
منابع مشابه
An Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources
This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO...
متن کاملReinforcement learning based feedback control of tumor growth by limiting maximum chemo-drug dose using fuzzy logic
In this paper, a model-free reinforcement learning-based controller is designed to extract a treatment protocol because the design of a model-based controller is complex due to the highly nonlinear dynamics of cancer. The Q-learning algorithm is used to develop an optimal controller for cancer chemotherapy drug dosing. In the Q-learning algorithm, each entry of the Q-table is updated using data...
متن کاملClassifier Subset Selection for the Stacked Generalization Method Applied to Emotion Recognition in Speech
In this paper, a new supervised classification paradigm, called classifier subset selection for stacked generalization (CSS stacking), is presented to deal with speech emotion recognition. The new approach consists of an improvement of a bi-level multi-classifier system known as stacking generalization by means of an integration of an estimation of distribution algorithm (EDA) in the first laye...
متن کاملA New Fuzzy Stabilizer Based on Online Learning Algorithm for Damping of Low-Frequency Oscillations
A multi objective Honey Bee Mating Optimization (HBMO) designed by online learning mechanism is proposed in this paper to optimize the double Fuzzy-Lead-Lag (FLL) stabilizer parameters in order to improve low-frequency oscillations in a multi machine power system. The proposed double FLL stabilizer consists of a low pass filter and two fuzzy logic controllers whose parameters can be set by the ...
متن کاملAdaptive Authentication System for Behavior Biometrics using Supervised Pareto Self Organizing Maps
The biometrics authentication systems take attentions to cover the weakness of password authentication system. In this paper, we focus attention on the multi modal-biometrics of behavior characteristics. For the integration of multi modal biometrics Supervised Pareto learning SOM(SP-SOM) and its incremental learning method for implementing adaptive authentication system are proposed. Key–Words:...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1607.08098 شماره
صفحات -
تاریخ انتشار 2016